H(x)=-16x^2+64+16

Simple and best practice solution for H(x)=-16x^2+64+16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(x)=-16x^2+64+16 equation:



(H)=-16H^2+64+16
We move all terms to the left:
(H)-(-16H^2+64+16)=0
We get rid of parentheses
16H^2+H-64-16=0
We add all the numbers together, and all the variables
16H^2+H-80=0
a = 16; b = 1; c = -80;
Δ = b2-4ac
Δ = 12-4·16·(-80)
Δ = 5121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5121}=\sqrt{9*569}=\sqrt{9}*\sqrt{569}=3\sqrt{569}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3\sqrt{569}}{2*16}=\frac{-1-3\sqrt{569}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3\sqrt{569}}{2*16}=\frac{-1+3\sqrt{569}}{32} $

See similar equations:

| 3x-52=x+12 | | 5^2x-7=12 | | y=350,000(3)^7 | | 3/4t=375 | | 7/4x+1/3=2x+1/12​ | | (2-2x)4=14 | | 75=5/3x | | 3x-26=x+6 | | X^2-16x-7=-5 | | (7x+2)°+(5x-8)°=180 | | 32*(21*4)/7/3(56)=2x*2 | | 86=2y-42. | | 8d+7=37 | | 5-4x3=-7 | | n+31/9=2 | | -13=-1/3a-22 | | 32*(21*4)/7/3(56)=x | | 13x+14−2(x−3)+5−3x=113 | | 8+6/7b=68 | | xx11=19x77 | | 25=15+m | | (6x+12)+(3x+2)=140 | | r+13/4=8 | | 8x-38=83-3x | | x-81=-57 | | 2x+0,05+2x-0,07=3,18 | | −3+w=7 | | ⁠3 17=⁠15 x | | 6y=10y² | | 4(x+2)-1=3 | | 3x=−51 | | p-58=24 |

Equations solver categories